12 TEM

PORAL

)
Marc Brockschmidt

°RO

D

-RTYV

|
Heidy Khlaaf

-RIFICATION

| 2
Byron Cook Samin Ishtiag ~ Nir Piterman

|
University College Longion

Microsoft Research

3
University of Leicester

OVERVIEW

» First open-source, public release of T2 (TERMINATOR 2), a
follow-up of the TERMINATOR project.

» Supports automatic verification of temporal-logics (CTL,

Fair-CTL, CTL*) and user-provided liveness and safety
properties over (integer) Infinite-state systems.

» |nput can be provided directly in C or other languages via
support of the LLVM compiler framework.

OVERVI

C Program

-W

» | LLVM Compiler

ot

Yes | No | Unknown

LLVM IR

T2 Input

+ Property

<

12: FEATURES

» Verification of temporal logic (reasoning about
propositions qualified in terms of time).

o Encompasses safety, termination, liveness, fairness,
etc.

o Supported sub-logics are: CTL, Fair-CTL,
CTL*,

12: FEATURES

12 1s the only tool that can handle automated

verification of Fair-CTL and CTL* for infinite-
state(integer) systems.

QARMC/HSF handles CTL but requires horn

clause constraints to be provided by the user as
input.

CTL*

FOANOENOBOBNORNOS CTL
@@@@@@@@@@@@

LTL

CTL*

12: FEATURES

o tventually this session will end.
o AF (Session ends).

» [here exists a sequence of actions that infinrtely
often leads to the coffee break table with pastries.

o EGF (Coffee lable && Pastries)

12: BACK-END

o “Fairness for Infinite-State Systems”’, TACAS'| 5
"On Automation of CTL* Verification for Infinite-State Systems’, CAV' |5

o Reduce the verification of CTL* and FairCTL to a CTL Model-
Checking problem.

» Via prophecy variables and program instrumentation.
o "Faster lemporal Reasoning for Infinite-State Programs”, FMCAD' | 4

o CTL can be reduced to a termination and safety problem via

program instrumentation.

12: BACK-END

CTL*/Fair-CTL CTL Termination Safety

12: BACK-END

» Builds upon safety proving procedures: Impact, Z3, and

Spacer.

» Termination back-end constructs a termination proof
through a sequence of safety queries and ranking function

synthesis steps.

o "Ramsey vs. lexicographic termination proving”, TACAS'| 3

o "Better termination proving through cooperation”, CAV'| 3

12: BACK-

2

Instrumentation

-ND

Refine

Counterex.

Preproc.

> Safety

¥ Simplif. T TN

Safel

Termination

4

> RF Synth.

Fail Fail

3 RS Synth.

Succ.l

Nontermination

(4

Fail

-XPERIMENTS: TERMINATION

Tool Term Nonterm Fail Avg. (s)
AProVE 641 393 188 49.1
Cpplnv 566 374 282 65.5
Ctrl 445 0 77 80.0
T2-GPDR 627 442 153 23.6

T2-GPDR-NoP 589 438 195 314
T2-Spacer-NoP 591 429 202 33.5
T2-Impact-NoP 529 452 241 37.2

N
0.51 510 3060 300

T2-GPDR (s)

o |222 termination proving benchmarks from lTermination
Competrtion 2015.

-XPERIMENTS: CTL

100 XTI ~
30
O 10| % g
z 50 xS :
é | Xy >/<X/ X a

”%é///xx ggé N

Oéx ® N

051 5> 10 30 100
T2 (s)

o 56 benchmarks where 12 takes 2./ seconds on average
and Q' ARMC takes 3.6 seconds.

12: RECAP

o Supports automatic verification of CTL, Fair-CTL, CTL*,

termination and safety properties over (integer) infinrte-
state systems.

o Open-Source: https://github.com/mmjb/ T2

o Supports LLVM languages via LLVM2ZKIT TelL +T2 extension:
https://github.com/hkhlaaf/llvm2kittel

o [ora close-up demo: TACAS Tool Market
Room: Outside Blauwe Zaal, floor |

|5

https://github.com/mmjb/T2
https://github.com/hkhlaaf/llvm2kittel

