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OVERVIEW

» First open-source, public release of T2 (TERMINATOR 2), a
follow-up of the TERMINATOR project.

» Supports automatic verification of temporal-logics (CTL,

Fair-CTL, CTL*) and user-provided liveness and safety
properties over (integer) Infinite-state systems.

» |nput can be provided directly in C or other languages via
support of the LLVM compiler framework.
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12: FEATURES

» Verification of temporal logic (reasoning about
propositions qualified in terms of time).

o Encompasses safety, termination, liveness, fairness,
etc.

o Supported sub-logics are: CTL, Fair-CTL,
CTL*,



12: FEATURES

12 1s the only tool that can handle automated

verification of Fair-CTL and CTL* for infinite-
state(integer) systems.

QARMC/HSF handles CTL but requires horn

clause constraints to be provided by the user as
input.
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12: FEATURES

o tventually this session will end.
o AF (Session ends).

» [here exists a sequence of actions that infinrtely
often leads to the coffee break table with pastries.

o EGF (Coffee lable && Pastries)



12: BACK-END

o “Fairness for Infinite-State Systems”’, TACAS'| 5
"On Automation of CTL* Verification for Infinite-State Systems’, CAV' |5

o Reduce the verification of CTL* and FairCTL to a CTL Model-
Checking problem.

» Via prophecy variables and program instrumentation.
o "Faster lemporal Reasoning for Infinite-State Programs”, FMCAD' | 4

o CTL can be reduced to a termination and safety problem via

program instrumentation.



12: BACK-END

CTL*/Fair-CTL CTL Termination Safety



12: BACK-END

» Builds upon safety proving procedures: Impact, Z3, and

Spacer.

» Termination back-end constructs a termination proof
through a sequence of safety queries and ranking function

synthesis steps.

o "Ramsey vs. lexicographic termination proving”, TACAS'| 3

o "Better termination proving through cooperation”, CAV'| 3
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-XPERIMENTS: TERMINATION

Tool Term Nonterm Fail Avg. (s)
AProVE 641 393 188  49.1
Cpplnv 566 374 282  65.5
Ctrl 445 0 77 80.0
T2-GPDR 627 442 153 23.6

T2-GPDR-NoP 589 438 195 314
T2-Spacer-NoP 591 429 202  33.5
T2-Impact-NoP 529 452 241  37.2

N
0.51 510 3060 300

T2-GPDR (s)

o |222 termination proving benchmarks from lTermination
Competrtion 2015.



-XPERIMENTS: CTL
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o 56 benchmarks where 12 takes 2./ seconds on average
and Q' ARMC takes 3.6 seconds.



12: RECAP

o Supports automatic verification of CTL, Fair-CTL, CTL*,

termination and safety properties over (integer) infinrte-
state systems.

o Open-Source: https://github.com/mmjb/ T2

o Supports LLVM languages via LLVM2ZKIT TelL +T2 extension:
https://github.com/hkhlaaf/llvm2kittel

o [ora close-up demo: TACAS Tool Market
Room: Outside Blauwe Zaal, floor |

|5


https://github.com/mmjb/T2
https://github.com/hkhlaaf/llvm2kittel

