FAIRNESS FOR INFINIT

STATE SYSTEMS

1 |)
Heidy Khlaaf Byron Cook Nir Piterman

|
University College Londgn

University of Leicester

FAIRNESS

o | a process requests a resource infinitely often, then it must
be granted infinrtely often (resource starvation).

» Verifying fairness:

» Bridges the gap between trace-based and state-based
reasoning, allowing us to prove things like fair-termination.

» When proving state-based properties, fairness is used to
model trace-based assumptions about the environment.

FAIRNESS

OCoONO U, WN B

PPBlockinits();
while (i < Pdolen) {
DName = PPMakeDeviceName(E)
if ('DName) { break; }
RtlInitUnicodeString(&deviceName, DName);
status = loCreateDevice(E);
if (STATUS_SUCCESS != status) {
Pdo[i] = NULL;
if (STATUS_OBJECT _NAME_COLLISION == status) {
ExFreePool(DName);
num-++;
continue;
}
break;
} else {

|++:
}
}

num = 0;
PPUnblockInits();

-MPLOYING FAIRNESS

o First known tool for symbolically proving fai~CTL properties
of InPnitatate programs.

» Solution Is based on a reduction to existing techniques for
fairness- free CTL model checking via prophecy variables.

» Prophecy variables are auxiliary variables whose values are
defined In terms of current program state and future

behavior;

TEMPORAL LOGIC

» Logic reasoning about propositions qualified in
terms of time.

» Used as a specification language as it encompasses

safety, liveness, fairness, etc.

o Most commonly used sub-logics are CTL (state
pased) and LTL (trace based).

CTLVS LTL

(3, (59 (s (8) (59 [(s) CTL
@@@@@@@@@@@@

LTL

CTL

» Reasoning about sets of states.

» Reasoning about non-deterministic (branching) programs.

o I =" T AXE AR AN WIE T EXT
EGH | B[U]

o Al —All:T hasto hold on all paths starting from all initial states.

o Bl — Exists:there exists at least one path starting from all inrtial

states where | holds.

CTL

o X I —Next:!' hasto hold at the next state.
o G ! —Globally:! hasto hold on the all states along a path.
o I —Fmnally:! eventually has to hold.

o I Ul »—Until:T | has to hold at least until at some
position ! » holds. ! » must be verified in the future.

o I "W I 5 —Weak until:! | has to hold until I » holds.

LIL

» Reasoning about sets of paths.

o Reasoning about concurrent programs.

o H =" | HIH# | H"H |GH |F# | [HFWH]|[HUH]

» Properties expressed in the universal fragment of CTL
(#CTL) are easier to prove than LTL properties.

LIL

»Can naturally express fairness: G- p = GF q

»Path based property not expressible in CTL.

*\When proving state-based CTL properties, we must often
use fairness to model path-based assumptions about the
environment.

*\When reasoning about concurrent environments, fairness Is
used to abstract away the scheduler.

FAIR LIVENESS ac @Locks AF unBLOCKy)

©CoOo~NOUh~WNLE

PPBlockinits();
while (i < Pdolen) {
DName = PPMakeDeviceName(E)
if ('DName) { break; }
RtlInitUnicodeString(&deviceName, DName);
status = loCreateDevice(E);
if (STATUS_SUCCESS != status) {
Pdo[i] = NULL;
if (STATUS_OBJECT _NAME_COLLISION == status) {
ExFreePool(DName);
num-++;
continue;
}
break;
} else {

|++:
}
}

num = 0;
PPUnblockInits();

FAIR LIVENESS

"5 Block() "5 11 Pdolen
' i =
", i < Pdolen "3 Unblock()

» [ransition system contains a non-terminating execution.

However, If we only allow fair executions, then it Is fair-terminating given that there
exists no infinite fair paths such that if $; occurs infinitely often then so does $..

o CTL can express liveness properties such as AG(Block()<z AF unblock() but not
that it should hold only under fair paths.

FAIR CTL

o A transition system M = (S, § R, Lind a fairness condition %
= (p,g)where p,d$ S

o An Iinfinite path & 1s unfair under % If states from P occur

infinitely often along & but states from ¢ occur finitely often.
Otherwise, & is fair.

FAIR CTL

» Fair CTL model checking restricts the checks to only fair paths:
. M, st [=%+ Al it I holds in ALL fair paths.
2. M,si |=%+ El' it ! holds in one or more fair paths.

o |dea: Reduce fair CTL to fairness-free CTL via prophecy
variables.

» Use the prophecy to encode a partition of fair from unfair
haths.

TH

[11
0
[11

DUCTION

Fair ((Sa SOaRa L)7(p7 Q)) = (SQ7S§O)7RQ7LQ)

where
Sq=5x%xN (Ap An' < n)V
Ro ={((s,n),(s',n")) | (s,5') € R}A ((p AR <n)V)
So = S% x N q

La(s,n) = L(s)

° Nis decreased whenever a transition imposing p! n" < n s taken.

» Since N %N, ncannot decrease Infinitely often, enforcing the eventual
invalidation of the transition p! n" <n.

» Ry, would only allow a transition to proceed if gholds or Ap! n' (n
holds. That Is, either q occurs infinitely often or p will occur finitely often.

15

TRANSFORMATION

L)'), ifts(s,s)#R

R=RU ()] "sss)# B L= [0 otherwise

» Fair(M)o) can include finite paths that are prefixes of unfair infinite paths due
to the wrong estimation of the number of p=s until g

» Must ensure that these paths do not interfere with the validity of our model
checking procedure.

o We distinguish between finite paths that occur in M and those introduced by
our reduction,

o Add a self-loop with proposition t to mark all original “valid” termination states.

TRANSFORMATION

Term (a,t)

Term (1! pa,t) o
Term (1" p2,1) =
Term (AXp,1) -
Term (AFp,t) ::
Term (A1 W 2], t) ::
Term (EXp,1) -
Term (EGp,t) -
Term (E[p1 Up2], t) ::

87

Term (p1,t) ! Term (2, t)
Term (p1,1) " Term (2, t)

t" AX(Term (p,1))

AFTerm (¢,t)

A[Term (p1,t) W Term (2, 1)]
=t EX(Term (p,1))

EGTerm (o,1)

E[Term (p1,1) U Term (2, 1)]

o Adjust the CTL specification to accommodate for this change.

o M|=¢.! & Term(M,1) |z, Termi , 1)

FAIR TERMINATION - REVISIT

[T
_

"o Block() 5 : !2_ I?dolen AT

!1 >@

"1 1 < Pdolen Arg "5 T ATrQ
Unblock()

nc{E"1"n!n)#CL"N'<n) #"231"n$ 0

o CTL property AG(lock()<z AF unlock().

o Strong fairness constraint % = ($1, $2),

~CTL

S0 S1 52 S3
< _______
r,p p p p

mo mi ma2

o M, My |=or EG(—p ! EFT) for % = (p,q)

o From § there is a path that eventually reaches S, where 1t satisfies I, and then
continues to S1, where p does not hold.

o [he paths which satisty EG(7p ! EF 1) are fair.

» However, system does not hold under Fair(Mo).

19

FAIR CTL

o As long as a new prophecy variable is introduced for each temporal sub-
formula, the reduction can still be applied.

» Recurse over each sub-formula, and add a non-termination (E!) or

termination (Al) clause, allowing us to ignore finite paths that are prefixes
of unfair infinrte-paths.

o Apply our reduction Fair(M, %) and run with I on an existing CTL model
checker which returns an assertion a characterizing the states in which |
holds.

o El') &n* 0.a

« Al') #n* 0.a

20

FAIR CTL

1
2
3
4
5
6
7
8

9
10
11
12
18
14
15
16
17
18
19
20
21

let FairCTL(M,! ,")

. assertion =

match(") with
| Q"1 OP"
| " bool _OP" 2 —
ap, = FAIRCTL(M,! ," 1);
Ay, = FAIRCTL(M,! ,"2)
| Q OP'1 —
ay, = FAIRCTL(M,! ," 1)
| # —
Upy = #

match(") with
| E"iU"2 —
"' = Elay, U(ay, A Aterm)]
| EG'1—
"' = EG(a,, A Aterm)
| E X"1—
"!'= EX(ay, A Aterm)
| A "1 W"5 —
"' = Alay, W(ay, Vterm)]

22
23
24
25
26
27
28
29
30
31
52
33
34
85
36
87
38
39
40
41

| A F'1 —

"' = AF(a,, Vterm)
| A X" 1 —

"' = AX(ay, Vterm)
| "1 bool _.OP" 2 —>

"' = a,, bool_OPa,,
| # —

LI —_—
— Qg

M' = Fair(M,!)
a=CTL(M,"")

match(") with
| E"' —

return In >0 . a
| A" —

return Vn >0 . a
| - —

return a

o FairCTL(BA!) employs an existing CTL model checker and the reduction
Fair(M, %0). An assertion characterizing the states in which !
fairness constraint % is returned.

2

holds under the

- XP

-RIM

-NTS

Program |LOC|Property FC|Time(s)|Result
WDD1 20{AG(Blocklnits () ! AF Unblocklnits ()) |Yes 14.4] !
WDD1 20{AG(Blocklnits () ! AF Unblocklnits ()) [No 2.1 !
WDD2 374|AG(AcqSpinLock() ! AF RelSpinLock ()) |Yes 18.8| !
WDD2 374|AG(AcqSpinLock() ! AF RelSpinLock ()) |No 14.1] |
WDD3 58 |AF(EnCritRegion () ! EG ExCritRegion ())|Yes 12.5] |
WDD3 58 |AF(EnCiritRegion () ! EG ExCritRegion ())|No 9.6 |
WDD4 302|AG(added.socket > 0! AFEG STATUSK |Yes 30.2 |
WDD4 302|AG(added.socket > 0! AFEG STATUSNK |No 72.4| !
Bakery 37|AG(Noncritical ! AF Critical) Yes 2.9 |
Bakery 37|AG(Noncritical ! AF Critical) No 16.4| |
Prod-Cons 30{AG(pi > 0! AFqg <=0) Yes 18.5| !
Prod-Cons 30{AG(pi > 0! AFqg <=0) No 5.5 !
Chain 48|AG(x" 8! AFx=0) Yes 1.8 !
Chain 48|AG(x" 8! AFx=0) No 4.7 |

22

—CAP

Introduced the first known method for symbolically proving fai=CTL
properties of (infinite-state) integer programs.

Solution Is based on a reduction which allows the use and integrate with
any off-the-shelf CTL tool

Use prophecy variables in the reduction for the purpose of symbolically
partitioning fair from unfair executions.

Implemented as an extension to T2, a CTL model checker which returns
assertions characterizing the states in which a property holds.

23

